BindingGroup
GBindingGroup
can be used to bind multiple properties from an object collectively.
Use the various methods to bind properties from a single source object to multiple destination objects. Properties can be bound bidirectionally and are connected when the source object is set with method@GObject.BindingGroup.set_source.
Skipped during bindings generation
method
source
: Property has no getter
Since
2.72
Constructors
Functions
Increases the reference count of the object by one and sets a callback to be called when all other references to the object are dropped, or when this is already the last reference to the object and another reference is established.
Creates a binding between @source_property on the source object and @target_property on @target. Whenever the @source_property is changed the @target_property is updated using the same value. The binding flag %G_BINDING_SYNC_CREATE is automatically specified.
Creates a binding between @source_property on @source and @target_property on @target.
Creates a binding between @source_property on @source and @target_property on @target, allowing you to set the transformation functions to be used by the binding.
The notify signal is emitted on an object when one of its properties has its value set through g_object_set_property(), g_object_set(), et al.
This is a variant of g_object_get_data() which returns a 'duplicate' of the value. @dup_func defines the meaning of 'duplicate' in this context, it could e.g. take a reference on a ref-counted object.
This is a variant of g_object_get_qdata() which returns a 'duplicate' of the value. @dup_func defines the meaning of 'duplicate' in this context, it could e.g. take a reference on a ref-counted object.
This function is intended for #GObject implementations to re-enforce a floating-ref object reference. Doing this is seldom required: all #GInitiallyUnowneds are created with a floating reference which usually just needs to be sunken by calling g_object_ref_sink().
Increases the freeze count on @object. If the freeze count is non-zero, the emission of "notify" signals on @object is stopped. The signals are queued until the freeze count is decreased to zero. Duplicate notifications are squashed so that at most one #GObject::notify signal is emitted for each property modified while the object is frozen.
Gets a property of an object.
Checks whether @object has a floating-ref reference.
Emits a "notify" signal for the property specified by @pspec on @object.
Removes a reference added with g_object_add_toggle_ref(). The reference count of the object is decreased by one.
Releases all references to other objects. This can be used to break reference cycles.
Sets a property on an object.
This sets an opaque, named pointer on an object. The name is specified through a #GQuark (retrieved e.g. via g_quark_from_static_string()), and the pointer can be gotten back from the @object with g_object_get_qdata() until the @object is finalized. Setting a previously set user data pointer, overrides (frees) the old pointer set, using #NULL as pointer essentially removes the data stored.
This function gets back user data pointers stored via g_object_set_qdata() and removes the @data from object without invoking its destroy() function (if any was set). Usually, calling this function is only required to update user data pointers with a destroy notifier, for example: |[ void object_add_to_user_list (GObject *object, const gchar *new_string) { // the quark, naming the object data GQuark quark_string_list = g_quark_from_static_string ("my-string-list"); // retrieve the old string list GList *list = g_object_steal_qdata (object, quark_string_list);
Reverts the effect of a previous call to g_object_freeze_notify(). The freeze count is decreased on @object and when it reaches zero, queued "notify" signals are emitted.
This function essentially limits the life time of the @closure to the life time of the object. That is, when the object is finalized, the @closure is invalidated by calling g_closure_invalidate() on it, in order to prevent invocations of the closure with a finalized (nonexisting) object. Also, g_object_ref() and g_object_unref() are added as marshal guards to the @closure, to ensure that an extra reference count is held on @object during invocation of the
Adds a weak reference callback to an object. Weak references are used for notification when an object is disposed. They are called "weak references" because they allow you to safely hold a pointer to an object without calling g_object_ref() (g_object_ref() adds a strong reference, that is, forces the object to stay alive).
Removes a weak reference callback to an object.